
Installing Windows 10X
195xx (emulator image) on
real hardware
Here's some quick notes on installing Windows 10X on real hardware. For this example, we're
assuming a system with no other critical disks installed, and a helpful host system being around to
set up the initial image.

Prerequisites
Host

Windows 10 Manganese build (195xx).
Utility USB flash drive of ~32GB+.

Target
CPU with Hyper-V support for VAIL.
Graphics card with DCHU drivers available.
UEFI system firmware with the ability to disable Secure Boot.
Boot drive larger than 128 GiB. An 128 GB SSD usually isn't.
Preferred: 4Kn boot drive. We'll provide steps a bit later for converting the image.

Host work
Fetch and mount the emulator image

Make sure you have a clean Flash.vhdx from the W10X emulator. Copy it someplace, and preferably
keep another backup as well.

Mount it using PowerShell (as administrator):

Check if the emulator image is mounted correctly:

This should look like the following:

Gather UpdateApp and verify it works
Start diskpart so you can mount MainOS:

From the MainOS partition, go and hunt down the following files and drop them in a standalone
folder (for example, X:\WCOS\Tools):

\Windows\Servicing

UpdateApp.exe
CbsApi.dll
CbsMsg.dll

\Windows\System32

CbsCore.dll
DrvServicing.dll

Mount-VHD "X:\WCOS\Flash.vhdx"

Get-StoragePool -FriendlyName OSPool

FriendlyName OperationalStatus HealthStatus IsPrimordial IsReadOnly Size AllocatedSize
------------ ----------------- ------------ ------------ ---------- ---- -------------
OSPool OK Healthy False False 127.9 GB 21.81 GB

list volume
select the volume called MainOS
select volume 42
assuming M: is free
assign letter=m

exit

https://aka.ms/xde/latest

IUSpaces.dll
IUSpaces_vb.dll (copy and rename IUSpaces.dll)
UpdateAPI.dll
cimfs.dll
cmiadapter.dll
cmiaisupport.dll
cmintegrator.dll
dpx.dll
drvstore.dll
msdelta.dll
mspatcha.dll
mspatchc.dll
turbostack.dll
wcp.dll
wdscore.dll

Run cmd.exe as administrator, go to the tool directory, and try getting the installed packages on
the image:

The result should look a lot like the following:

cd /d X:\WCOS\Tools
updateapp getinstalledpackages

UpdateApp - Update Application for Windows Mobile

[00:00:00] Loaded servicing stack from X:\wcos\tools with session name IUPackageInfoSession_EFIESP
[00:00:00] External storage staging directory is: (null)
[00:00:00] Closing session IUPackageInfoSession_EFIESP
[00:00:00] Loaded servicing stack from X:\wcos\tools with session name IUPackageInfoSession_MainOS
[00:00:00] External storage staging directory is: (null)
[00:00:01] Closing session IUPackageInfoSession_MainOS
164 packages:
Microsoft-OneCore-HyperV-Guest-UpdateOS-Package~31bf3856ad364e35~amd64~en-US~10.0.19563.1000,
UpdateOS
Microsoft-OneCore-HyperV-Guest-UpdateOS-Package~31bf3856ad364e35~amd6410.0.19563.1000, UpdateOS
Microsoft-OneCore-ServicingStack-UpdateOS-Package~31bf3856ad364e35~amd6410.0.19563.1000, updateos
Microsoft-OneCore-ServicingStack-UpdateOS-UX-Package~31bf3856ad364e35~amd6410.0.19563.1000,
updateos
Microsoft-OneCoreUpdateOS-Product-Package~31bf3856ad364e35~amd64~en-US~10.0.19563.1000, updateos
Microsoft-OneCoreUpdateOS-Product-Package~31bf3856ad364e35~amd6410.0.19563.1000, updateos
Microsoft-Windows-OneCoreUpdateOS-ImageCustomization-Package~31bf3856ad364e35~amd64
10.0.19563.1000, updateos

If it does, congratulations! You can move on to the next step.

Inject graphics and network drivers
For this example we'll show the Intel HD Graphics driver, but you might need to add more INFs
depending on your hardware. If you can't find the right INFs, why are you even doing this?

Place extracted Intel drivers in a directory, so that you have e.g.
X:\WCOS\DHCUDrivers\Graphics\iigd_dch.inf . Open iigd_dch.inf , and note down the values for 'Provider'
and 'DriverVer'. For me, those were:

The provider name is an indirected variable here, so we go and find what %Intel% meant as well. A
bit below in the INF, we find the following:

Good! Now, invoke updateapp with the data we've just discovered to install the INF to the BSP
partition in your WCOS image:

Note the recurrence of Intel_Corporation and 26.20.100.7518 . The installation process will complain
with an error code of c0880005 if you get the 'keyform' wrong.

The general rule for inf file names and provider names in the 'keyform' is the following:

Microsoft-Composable-ModernPC-BootEnvironment-Core-CodeIntegrity-Sbcp-
Package~31bf3856ad364e35~amd6410.0.19563.1000, EFIESP
Microsoft-OneCore-BcdBootoption-Package~31bf3856ad364e35~amd64~~10.0.19563.1000, EFIESP

getinstalledpackages completed successfully
command took 7 seconds

 [...]

Provider=%Intel%
DriverVer=08/23/2019,26.20.100.7158

Intel = "Intel Corporation"

updateapp install "DriverPackage|X:\WCOS\DHCUDrivers\Graphics\iigd_dch.inf|Intel_Corporation-
iigd_dch.inf~amd64~26.20.100.7158~bsp|0"

Any space in the inf name or the provider name must get replaced by an underscore '_'
Any dash in the inf name or the provider name must get replaced by an underscore '_'

After you've installed your favorite driver packages, we can prepare the utility flash drive.

Make a utility flash drive
Gather the following assets into a directory we'll label X:\WCOS\UtilityDrive\Boot :

From an ISO of Windows 10 19559 AMD64 (or higher - see UUPDump or similar for
generating these):

boot\
EFI\
sources\boot.wim
bootmgr.efi

For later servicing, your WCOS\Tools folder. Use a hex editor to replace any mention
of the Unicode string X:\Windows in UpdateAPI.dll and UpdateApp.exe with
something like X:\Wbndows , or expect any servicing tasks to fail.
An x64 EFI shell. Rename EFI\boot\bootx64.efi to EFI\boot\winx64.efi, and name
the shell as EFI\boot\bootx64.efi. You'll need the shell in order to ever boot regular
Windows again (including PE).
A file called startup.nsh in the root:

If you are having troubles getting back to Windows PE/Windows Desktop, you may also try
the following extra commands in startup.nsh: (Warning: these will kill every variables you
have saved on your system)

dmpstore -d SecureBootPlatformID
fs0:\efi\boot\winx64.efi
fs1:\efi\boot\winx64.efi
fs2:\efi\boot\winx64.efi
fs3:\efi\boot\winx64.efi
fs4:\efi\boot\winx64.efi
fs5:\efi\boot\winx64.efi
fs6:\efi\boot\winx64.efi
fs7:\efi\boot\winx64.efi
fs8:\efi\boot\winx64.efi
fs9:\efi\boot\winx64.efi
fsA:\efi\boot\winx64.efi

dmpstore -d -guid BA57E015-65B3-4C3C-B274-659192F699E3
dmpstore -d -guid 77FA9ABD-0359-4D32-BD60-28F4E78F784B

https://uupdump.ml/
https://github.com/tianocore/edk2/blob/UDK2018/ShellBinPkg/UefiShell/X64/Shell.efi?raw=true

dmpstore -d -guid EAEC226F-C9A3-477A-A826-DDC716CDC0E3

gdisk64.exe from GPT fdisk.
ddrelease64.exe.

Partitioning
1. Connect your UFD.
2. Open diskpart .
3. list disk , select disk the right disk, or you'll lose all data on it and will have to do a

long partition scan to have any hopes of retrieving your data, and clean + convert
gpt .

4. create partition primary size=5000 , format fs=fat32 quick , assign letter=y to make a bootable
FAT32 partition.

5. create partition primary , format fs=exfat quick , assign letter=z to make an exFAT partition to
house the VHDX.

Putting things in place
Place your boot drive directory on the drive you called Y: . Dismount-VHD "X:\WCOS\Flash.vhdx in your
PowerShell to unmount the VHDX, and copy the VHDX to Z: . You should now have a tree structure
similar to:

Eject and unplug the UFD.

Target work
Use your throwaway laptop or other modern enough system with larger-than-128GB system drive.
Make sure Secure Boot is off.

Y:\
 Boot\
 EFI\
 Sources\
 Tools\
 startup.nsh

Z:

Flash.vhdx

http://www.rodsbooks.com/gdisk/download.html
http://www.chrysocome.net/download

Boot Windows PE
Boot it on the target. Really. Once you get into Setup, press Shift-F10 to open a command prompt.
Go back and open another, for good measure. Alt-Tab works for switching here.

Copy the VHD (destructive!)
Find out where your USB flash drive is mounted. This will involve doing a lot of the following:

Here, we'll assume the boot volume is D: and the volume with Flash.vhdx is E:.

Open diskpart , and attach the VHD:

Note down the ID of a 2048 MB disk with a 2048 MB free space, and subtract 1 from it.

The ID to note down, therefore, is 16. Also, note down the ID of the target disk (3 in this case).

Wipe it. Yes. That's data loss for you. Make sure you've got backups of anything important
on there.

C:
dir
D:
dir
E:
dir
F:
dir

select vdisk file=E:\flash.vhdx
attach vdisk readonly
wait a minute or so
list disk
if MainOS etc. show up as online, good!

 # note: there's no 16
 Disk 17 Online 2048 MB 2048 MB

select disk 3
clean
convert mbr

(replacing 3)

Copy the VHDX's content to your disk:

(replacing 16 and 3)

... and go have a hot beverage while waiting for this to hit 131072M.

Rebuild the GPT (for 512-byte disks only)
You probably have a 512-byte disk, so you're going to have to rebuild the GPT. Yay!

Run commands along the following:

Remember the numbers (start, end, code and name) for each partition. Multiply the numbers by 8
(since 4K/512 = 8) - so you get 4096, 69624, etc.

Now, we'll create a new GPT for the target disk:

exit

E:\Tools\ddrelease64 if=\\.\physicaldrive16 of=\\.\physicaldrive3 bs=8M --progress

> E:\tools\gdisk64 -l \\.\physicaldrive16
[..]
Number Start (sector) End (sector) Size Code Name
 1 512 8703 32.0 MiB EF00 BS_EFIESP
 2 8704 33554426 128.0 GiB 4202 OSPool

E:\tools\gdisk64 \\.\physicaldrive3
accept any warning
x
z

E:\tools\gdisk64 \.\physicaldrive3

accept the warning

Exit all open windows, and your system should reboot.

n
1
4096
69631
EF00

n
2
69632
268435415
4202

c
1
BS_EFIESP

c
2
OSPool

p

check if it makes sense -
matches the above but with
different sector numbers
w

Boot Windows PE, again
Boot into Windows PE again - not the internal disk you just overwrote. Verify in diskpart if you can
list volume and it'll show MainOS etc. without you having attached the VHD.

Remove WCOS Security
In Windows PE, open diskpart and do select volume . Find the volume named ÈFIESP we will assume
here its volume id is 6, yours may be different. Then we run select volume 6 and assign . Do list
volume again to find the drive letter of EFIESP, in our case it's E: , yours may be different.

Delete the following file: del E:\efi\Microsoft\Boot\SecureBootPolicy.p7b

You may additionally replace winsipolicy.p7b with the one from a desktop sku (the file is located in
the same folder).

Boot W10X
OK, now you can boot your internal disk. If you haven't followed the Remove WCOS Security
instructions, this will set a Secure Boot policy value, however, so you'll have to boot your utility
flash drive again if you want to boot any other Windows media (or otherwise execute the dmpstore
command).

If everything's right, you should be booting into Windows 10X, and your graphics adapter might
even be working.

Revision #22
Created 12 February 2020 17:00:13 by nta
Updated 24 November 2022 21:29:07 by Daniel Kornev

