
Windows 10X
You are now entering State Separation Zone

Microsoft Emulator (XdeManager)
Installing Windows 10X 195xx (emulator image) on real hardware
Dual booting legacy Windows 10 with Windows 10X
Creating a pool from scratch
Installing Windows 10X (from cabs) on real hardware
Installing Windows 10X (from cabs with Device Image Generator) on real hardware
Reverting 10X boot restrictions & returning to classic 10
Installing Windows 10X 20279 (emulator image) on real hardware

Microsoft Emulator
(XdeManager)
Links to the app

aka.ms/emulator/app
aka.ms/xde/store
Store page

Enabling Internal Mode
Create HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\SQMClient

https://aka.ms/emulator/app
https://aka.ms/xde/store
https://www.microsoft.com/en-us/p/microsoft-emulator/9N0TN65P5BF6

Set key MSFTInternal to 1 (DWORD)

https://osg.wiki/uploads/images/gallery/2020-02/9oySmGmFkjM6rxvx-photo_2020-02-11_22-52-39.jpg

Installing Windows 10X
195xx (emulator image) on
real hardware
Here's some quick notes on installing Windows 10X on real hardware. For this example, we're
assuming a system with no other critical disks installed, and a helpful host system being around to
set up the initial image.

Prerequisites
Host

Windows 10 Manganese build (195xx).
Utility USB flash drive of ~32GB+.

Target
CPU with Hyper-V support for VAIL.
Graphics card with DCHU drivers available.
UEFI system firmware with the ability to disable Secure Boot.
Boot drive larger than 128 GiB. An 128 GB SSD usually isn't.
Preferred: 4Kn boot drive. We'll provide steps a bit later for converting the image.

Host work
Fetch and mount the emulator image
Make sure you have a clean Flash.vhdx from the W10X emulator. Copy it someplace, and preferably
keep another backup as well.

https://aka.ms/xde/latest

Mount it using PowerShell (as administrator):

Check if the emulator image is mounted correctly:

This should look like the following:

Gather UpdateApp and verify it works
Start diskpart so you can mount MainOS:

From the MainOS partition, go and hunt down the following files and drop them in a standalone
folder (for example, X:\WCOS\Tools):

\Windows\Servicing

UpdateApp.exe
CbsApi.dll
CbsMsg.dll

\Windows\System32

CbsCore.dll
DrvServicing.dll
IUSpaces.dll
IUSpaces_vb.dll (copy and rename IUSpaces.dll)
UpdateAPI.dll
cimfs.dll

Mount-VHD "X:\WCOS\Flash.vhdx"

Get-StoragePool -FriendlyName OSPool

FriendlyName OperationalStatus HealthStatus IsPrimordial IsReadOnly Size AllocatedSize
------------ ----------------- ------------ ------------ ---------- ---- -------------
OSPool OK Healthy False False 127.9 GB 21.81 GB

list volume
select the volume called MainOS
select volume 42
assuming M: is free
assign letter=m

exit

cmiadapter.dll
cmiaisupport.dll
cmintegrator.dll
dpx.dll
drvstore.dll
msdelta.dll
mspatcha.dll
mspatchc.dll
turbostack.dll
wcp.dll
wdscore.dll

Run cmd.exe as administrator, go to the tool directory, and try getting the installed packages on
the image:

The result should look a lot like the following:

cd /d X:\WCOS\Tools
updateapp getinstalledpackages

UpdateApp - Update Application for Windows Mobile

[00:00:00] Loaded servicing stack from X:\wcos\tools with session name IUPackageInfoSession_EFIESP
[00:00:00] External storage staging directory is: (null)
[00:00:00] Closing session IUPackageInfoSession_EFIESP
[00:00:00] Loaded servicing stack from X:\wcos\tools with session name IUPackageInfoSession_MainOS
[00:00:00] External storage staging directory is: (null)
[00:00:01] Closing session IUPackageInfoSession_MainOS
164 packages:
Microsoft-OneCore-HyperV-Guest-UpdateOS-Package~31bf3856ad364e35~amd64~en-US~10.0.19563.1000,
UpdateOS
Microsoft-OneCore-HyperV-Guest-UpdateOS-Package~31bf3856ad364e35~amd6410.0.19563.1000, UpdateOS
Microsoft-OneCore-ServicingStack-UpdateOS-Package~31bf3856ad364e35~amd6410.0.19563.1000, updateos
Microsoft-OneCore-ServicingStack-UpdateOS-UX-Package~31bf3856ad364e35~amd6410.0.19563.1000,
updateos
Microsoft-OneCoreUpdateOS-Product-Package~31bf3856ad364e35~amd64~en-US~10.0.19563.1000, updateos
Microsoft-OneCoreUpdateOS-Product-Package~31bf3856ad364e35~amd6410.0.19563.1000, updateos
Microsoft-Windows-OneCoreUpdateOS-ImageCustomization-Package~31bf3856ad364e35~amd64
10.0.19563.1000, updateos
Microsoft-Composable-ModernPC-BootEnvironment-Core-CodeIntegrity-Sbcp-
Package~31bf3856ad364e35~amd6410.0.19563.1000, EFIESP
Microsoft-OneCore-BcdBootoption-Package~31bf3856ad364e35~amd64~~10.0.19563.1000, EFIESP

If it does, congratulations! You can move on to the next step.

Inject graphics and network drivers
For this example we'll show the Intel HD Graphics driver, but you might need to add more INFs
depending on your hardware. If you can't find the right INFs, why are you even doing this?

Place extracted Intel drivers in a directory, so that you have e.g.
X:\WCOS\DHCUDrivers\Graphics\iigd_dch.inf . Open iigd_dch.inf , and note down the values for 'Provider'
and 'DriverVer'. For me, those were:

The provider name is an indirected variable here, so we go and find what %Intel% meant as well. A
bit below in the INF, we find the following:

Good! Now, invoke updateapp with the data we've just discovered to install the INF to the BSP
partition in your WCOS image:

Note the recurrence of Intel_Corporation and 26.20.100.7518 . The installation process will complain
with an error code of c0880005 if you get the 'keyform' wrong.

The general rule for inf file names and provider names in the 'keyform' is the following:

Any space in the inf name or the provider name must get replaced by an underscore '_'
Any dash in the inf name or the provider name must get replaced by an underscore '_'

After you've installed your favorite driver packages, we can prepare the utility flash drive.

getinstalledpackages completed successfully
command took 7 seconds

 [...]

Provider=%Intel%
DriverVer=08/23/2019,26.20.100.7158

Intel = "Intel Corporation"

updateapp install "DriverPackage|X:\WCOS\DHCUDrivers\Graphics\iigd_dch.inf|Intel_Corporation-
iigd_dch.inf~amd64~26.20.100.7158~bsp|0"

Make a utility flash drive
Gather the following assets into a directory we'll label X:\WCOS\UtilityDrive\Boot :

From an ISO of Windows 10 19559 AMD64 (or higher - see UUPDump or similar for
generating these):

boot\
EFI\
sources\boot.wim
bootmgr.efi

For later servicing, your WCOS\Tools folder. Use a hex editor to replace any mention
of the Unicode string X:\Windows in UpdateAPI.dll and UpdateApp.exe with
something like X:\Wbndows , or expect any servicing tasks to fail.
An x64 EFI shell. Rename EFI\boot\bootx64.efi to EFI\boot\winx64.efi, and name
the shell as EFI\boot\bootx64.efi. You'll need the shell in order to ever boot regular
Windows again (including PE).
A file called startup.nsh in the root:

If you are having troubles getting back to Windows PE/Windows Desktop, you may also try
the following extra commands in startup.nsh: (Warning: these will kill every variables you
have saved on your system)

dmpstore -d SecureBootPlatformID
fs0:\efi\boot\winx64.efi
fs1:\efi\boot\winx64.efi
fs2:\efi\boot\winx64.efi
fs3:\efi\boot\winx64.efi
fs4:\efi\boot\winx64.efi
fs5:\efi\boot\winx64.efi
fs6:\efi\boot\winx64.efi
fs7:\efi\boot\winx64.efi
fs8:\efi\boot\winx64.efi
fs9:\efi\boot\winx64.efi
fsA:\efi\boot\winx64.efi

dmpstore -d -guid BA57E015-65B3-4C3C-B274-659192F699E3
dmpstore -d -guid 77FA9ABD-0359-4D32-BD60-28F4E78F784B
dmpstore -d -guid EAEC226F-C9A3-477A-A826-DDC716CDC0E3

gdisk64.exe from GPT fdisk.
ddrelease64.exe.

https://uupdump.ml/
https://github.com/tianocore/edk2/blob/UDK2018/ShellBinPkg/UefiShell/X64/Shell.efi?raw=true
http://www.rodsbooks.com/gdisk/download.html
http://www.chrysocome.net/download

Partitioning
1. Connect your UFD.
2. Open diskpart .
3. list disk , select disk the right disk, or you'll lose all data on it and will have to do a

long partition scan to have any hopes of retrieving your data, and clean + convert
gpt .

4. create partition primary size=5000 , format fs=fat32 quick , assign letter=y to make a bootable
FAT32 partition.

5. create partition primary , format fs=exfat quick , assign letter=z to make an exFAT partition to
house the VHDX.

Putting things in place
Place your boot drive directory on the drive you called Y: . Dismount-VHD "X:\WCOS\Flash.vhdx in your
PowerShell to unmount the VHDX, and copy the VHDX to Z: . You should now have a tree structure
similar to:

Eject and unplug the UFD.

Target work
Use your throwaway laptop or other modern enough system with larger-than-128GB system drive.
Make sure Secure Boot is off.

Boot Windows PE
Boot it on the target. Really. Once you get into Setup, press Shift-F10 to open a command prompt.
Go back and open another, for good measure. Alt-Tab works for switching here.

Y:\
 Boot\
 EFI\
 Sources\
 Tools\
 startup.nsh

Z:

Flash.vhdx

Copy the VHD (destructive!)
Find out where your USB flash drive is mounted. This will involve doing a lot of the following:

Here, we'll assume the boot volume is D: and the volume with Flash.vhdx is E:.

Open diskpart , and attach the VHD:

Note down the ID of a 2048 MB disk with a 2048 MB free space, and subtract 1 from it.

The ID to note down, therefore, is 16. Also, note down the ID of the target disk (3 in this case).

Wipe it. Yes. That's data loss for you. Make sure you've got backups of anything important
on there.

(replacing 3)

Copy the VHDX's content to your disk:

C:
dir
D:
dir
E:
dir
F:
dir

select vdisk file=E:\flash.vhdx
attach vdisk readonly
wait a minute or so
list disk
if MainOS etc. show up as online, good!

 # note: there's no 16
 Disk 17 Online 2048 MB 2048 MB

select disk 3
clean
convert mbr
exit

(replacing 16 and 3)

... and go have a hot beverage while waiting for this to hit 131072M.

Rebuild the GPT (for 512-byte disks only)
You probably have a 512-byte disk, so you're going to have to rebuild the GPT. Yay!

Run commands along the following:

Remember the numbers (start, end, code and name) for each partition. Multiply the numbers by 8
(since 4K/512 = 8) - so you get 4096, 69624, etc.

Now, we'll create a new GPT for the target disk:

E:\Tools\ddrelease64 if=\\.\physicaldrive16 of=\\.\physicaldrive3 bs=8M --progress

> E:\tools\gdisk64 -l \\.\physicaldrive16
[..]
Number Start (sector) End (sector) Size Code Name
 1 512 8703 32.0 MiB EF00 BS_EFIESP
 2 8704 33554426 128.0 GiB 4202 OSPool

E:\tools\gdisk64 \\.\physicaldrive3
accept any warning
x
z

E:\tools\gdisk64 \.\physicaldrive3

accept the warning
n
1
4096
69631
EF00

Exit all open windows, and your system should reboot.

Boot Windows PE, again
Boot into Windows PE again - not the internal disk you just overwrote. Verify in diskpart if you can
list volume and it'll show MainOS etc. without you having attached the VHD.

Remove WCOS Security

n
2
69632
268435415
4202

c
1
BS_EFIESP

c
2
OSPool

p

check if it makes sense -
matches the above but with
different sector numbers
w

In Windows PE, open diskpart and do select volume . Find the volume named ÈFIESP we will assume
here its volume id is 6, yours may be different. Then we run select volume 6 and assign . Do list
volume again to find the drive letter of EFIESP, in our case it's E: , yours may be different.

Delete the following file: del E:\efi\Microsoft\Boot\SecureBootPolicy.p7b

You may additionally replace winsipolicy.p7b with the one from a desktop sku (the file is located in
the same folder).

Boot W10X
OK, now you can boot your internal disk. If you haven't followed the Remove WCOS Security
instructions, this will set a Secure Boot policy value, however, so you'll have to boot your utility
flash drive again if you want to boot any other Windows media (or otherwise execute the dmpstore
command).

If everything's right, you should be booting into Windows 10X, and your graphics adapter might
even be working.

Dual booting legacy
Windows 10 with Windows
10X

Created: February 15, 2020 Last Update: January 21, 2021

Authors: Gustave Monce

Status: Draft

Supported Windows 10X Version: 195xx

This guide will assume you have properly installed Windows 10X before using the instructions
provided in this book with no step skipped.

Note: This guide has not been updated to support dual booting Windows 10X version 20279 with
Windows 10 yet.

Prerequisites
An host computer
The target computer running Windows 10X
Your utility flash drive (UFD)
An installation media of Windows 10 build 195xx (or higher)
An usb driver with the installation files of said Windows 10 build

Preparing the pool
Boot the target computer into your UFD, and make sure you're in the command prompt. Verify
using diskpart that you see all space partitions on disk (MainOS, Data, OSData...) by using

diskpart

this will list all volumes and show MainOS, Data...
list vol

https://twitter.com/gus33000

Once verified, you can start preparing the pool to accomodate for legacy Windows 10.

Run the following commands to create the new partition that will host legacy Windows 10:

At this point you should start seeing a new disk in diskpart, usually it is the latest one. Verify that
no partition is present on it, if that's the case, you found the right one. We will assume in the rest of
this guide that the disk id found earlier is 25.

Execute the following commands in diskpart:

We will assume in the rest of this guide, your mountpoint is W: for DesktopOS.

Adding the required boot entry
In command prompt, go back to diskpart again and try to find the VIRT_EFIESP partition, you can
find it by using the list volume command. Here we will assume the id is 15.

Execute the following commands:

exiting diskpart
exit

spaceutil new-space -PoolName OSPool -Name "DesktopOSDisk" -ProvisionedCapacity 128G -MinFdType Drive -
MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -NumberOfGroups 1 -
NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags System Active
spaceutil Set-Space -PoolName OSPool -Name "DesktopOSDisk" -IsSystem true -IsActive true
spaceutil Attach-Space -PoolName OSPool -Name "DesktopOSDisk"

replace 25 with your id!
select disk 25
convert gpt
crea part pri
format fs=NTFS label=DesktopOS quick
assign
this will tell you the drive letter assigned
detail part
exiting diskpart
exit

We will assume we mounted VIRT_EFIESP as Z: here

Execute the following commands:

Applying Desktop
Now find your install.wim legacy Windows 10 image, we assume here we included the windows 10
installation media and it's mounted as the drive letter U:, so our wim is located in
U:\sources\install.wim

diskpart
replace 15 with the id you found earlier for VIRT_EFIESP!
select volume 15
assign
this will tell you the drive letter it assigned
list volume
exiting diskpart
exit

Z:
cd efi\microsoft\boot
bcdedit /store BCD /displayorder {default}
this will tell you the new guid, here we assume that was {276291b0-e55c-48d7-a87f-9cb79facba1a} replace
this in all subsequent commands
bcdedit /store BCD /copy {default} /d "DesktopOS"
make sure to replace W: with the drive letter for DesktopOS!
bcdedit /store BCD /set {276291b0-e55c-48d7-a87f-9cb79facba1a} device partition=W:
bcdedit /store BCD /set {276291b0-e55c-48d7-a87f-9cb79facba1a} osdevice partition=W:
bcdedit /store BCD /set {276291b0-e55c-48d7-a87f-9cb79facba1a} testsigning on
bcdedit /store BCD /set {276291b0-e55c-48d7-a87f-9cb79facba1a} nointegritychecks on
bcdedit /store BCD /set {276291b0-e55c-48d7-a87f-9cb79facba1a} flightsigning on

optional (your windows 10 may be state separated without these command ran before boot)
bcdedit /store BCD /deletevalue {276291b0-e55c-48d7-a87f-9cb79facba1a} bspdevice
bcdedit /store BCD /deletevalue {276291b0-e55c-48d7-a87f-9cb79facba1a} osdatadevice

bcdedit /store BCD /set {bootmgr} displaybootmenu on
bcdedit /store BCD /set {bootmgr} timeout 15

Run the following commands (do not forget to replace letter paths, W: here is our DesktopOS
partition!)

Final notes
You can now reboot your machine, you'll be present with a selection between MAINOS and
DesktopOS, MAINOS will boot into 10X, DesktopOS will boot into desktop, if you get a signature
verifcation error, press F8 in the boot menu once it shows up and when it tells you you can do so,
and press 7 on your keyboard, windows 10 will load.

dism /Apply-Image /ImageFile:U:\sources\install.wim /Index:1 /ApplyDir:W:

Creating a pool from scratch
REM value in GB
set TARGET_SIZE=128

set DriveID=0

spaceutil New-Pool -DriveNumber %DriveID% -Name OSPool -CompatibleVersion "Windows 19H1" -
MetadataLength 64M -Threshold 70 -ZeroOnDeallocate False -IsPowerProtected False -RapidRegeneration False -
RetireMissingDrives Auto -MinimumAllocationSize 1M -DefaultProvisioningType Thin -DefaultMinFdType Drive -
DefaultMaxFdType Drive -DefaultResiliencyType Simple -DefaultReadCacheSize 0

spaceutil New-Space -PoolName OSPool -Name "IU_RESERVE_DISK" -ProvisionedCapacity 2G -MinFdType Drive -
MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -NumberOfGroups 1 -
NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags System Active
spaceutil Set-Space -PoolName OSPool -Name "IU_RESERVE_DISK" -IsSystem true -IsActive true
spaceutil Attach-Space -PoolName OSPool -Name "IU_RESERVE_DISK"

spaceutil New-Space -PoolName OSPool -Name "SERVICING_STAGING_ROOTDISK" -ProvisionedCapacity 10G -
MinFdType Drive -MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -
NumberOfGroups 1 -NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0
spaceutil Attach-Space -PoolName OSPool -Name "SERVICING_STAGING_ROOTDISK"

spaceutil New-Space -PoolName OSPool -Name "PreInstalledDisk" -ProvisionedCapacity %TARGET_SIZE%G -
MinFdType Drive -MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -
NumberOfGroups 1 -NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags System Active
spaceutil Set-Space -PoolName OSPool -Name "PreInstalledDisk" -IsSystem true -IsActive true
spaceutil Attach-Space -PoolName OSPool -Name "PreInstalledDisk"

spaceutil New-Space -PoolName OSPool -Name "EFIESPDisk" -ProvisionedCapacity %TARGET_SIZE%G -
MinFdType Drive -MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -
NumberOfGroups 1 -NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags System Active
spaceutil Set-Space -PoolName OSPool -Name "EFIESPDisk" -IsSystem true -IsActive true
spaceutil Attach-Space -PoolName OSPool -Name "EFIESPDisk"

spaceutil New-Space -PoolName OSPool -Name "VIRT_EFIESPDisk" -ProvisionedCapacity 1G -MinFdType Drive -
MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -NumberOfGroups 1 -

NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags System Active
spaceutil Set-Space -PoolName OSPool -Name "VIRT_EFIESPDisk" -IsSystem true -IsActive true
spaceutil Attach-Space -PoolName OSPool -Name "VIRT_EFIESPDisk"

spaceutil New-Space -PoolName OSPool -Name "SERVICING_FILESDISK" -ProvisionedCapacity 10G -MinFdType
Drive -MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -NumberOfGroups 1 -
NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags System Active
spaceutil Set-Space -PoolName OSPool -Name "SERVICING_FILESDISK" -IsSystem true -IsActive true
spaceutil Attach-Space -PoolName OSPool -Name "SERVICING_FILESDISK"

spaceutil New-Space -PoolName OSPool -Name "BSPDisk" -ProvisionedCapacity %TARGET_SIZE%G -MinFdType
Drive -MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -NumberOfGroups 1 -
NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags System Active
spaceutil Set-Space -PoolName OSPool -Name "BSPDisk" -IsSystem true -IsActive true
spaceutil Attach-Space -PoolName OSPool -Name "BSPDisk"

spaceutil New-Space -PoolName OSPool -Name "SERVICING_METADATADisk" -ProvisionedCapacity 256MB -
MinFdType Drive -MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -
NumberOfGroups 1 -NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags System Active
spaceutil Set-Space -PoolName OSPool -Name "SERVICING_METADATADisk" -IsSystem true -IsActive true
spaceutil Attach-Space -PoolName OSPool -Name "SERVICING_METADATADisk"

spaceutil New-Space -PoolName OSPool -Name "VailContainer" -ProvisionedCapacity %TARGET_SIZE%G -
MinFdType Drive -MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -
NumberOfGroups 1 -NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags System
spaceutil Set-Space -PoolName OSPool -Name "VailContainer" -IsSystem true

spaceutil New-Space -PoolName OSPool -Name "OSDataDisk" -ProvisionedCapacity %TARGET_SIZE%G -
MinFdType Drive -MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -
NumberOfGroups 1 -NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags System Active
spaceutil Set-Space -PoolName OSPool -Name "OSDataDisk" -IsSystem true -IsActive true
spaceutil Attach-Space -PoolName OSPool -Name "OSDataDisk"

spaceutil New-Space -PoolName OSPool -Name "DataDisk" -ProvisionedCapacity %TARGET_SIZE%G -MinFdType
Drive -MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -NumberOfGroups 1 -
NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags System Active
spaceutil Set-Space -PoolName OSPool -Name "DataDisk" -IsSystem true -IsActive true
spaceutil Attach-Space -PoolName OSPool -Name "DataDisk"

spaceutil New-Space -PoolName OSPool -Name "MainOSDisk" -ProvisionedCapacity %TARGET_SIZE%G -

MinFdType Drive -MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -NumberOfCopies 1 -
NumberOfGroups 1 -NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags System Active
spaceutil Set-Space -PoolName OSPool -Name "MainOSDisk" -IsSystem true -IsActive true
spaceutil Attach-Space -PoolName OSPool -Name "MainOSDisk"

spaceutil New-Space -PoolName OSPool -Name "Container Manager Persisted Storage" -ProvisionedCapacity
%TARGET_SIZE%G -MinFdType Drive -MaxFdType Drive -ResiliencyType Simple -FaultTolerance 0 -
NumberOfCopies 1 -NumberOfGroups 1 -NumberOfColumns 1 -WriteCacheSize 0 -ReadCacheSize 0 -Flags
System
spaceutil Set-Space -PoolName OSPool -Name "Container Manager Persisted Storage" -IsSystem true

Installing Windows 10X
(from cabs) on real hardware

Created: January 18, 2021 Last Update: February 2, 2021

Authors: NT Authority, Albacore, Gustave Monce, Rafael Rivera,
Daniel Kornev

Status: Draft

Supported Windows 10X Version: 20279

Disclaimer: Some drivers may fail to load, the guide will be updated with extra tips on
extending driver compatibility later

Overview
Here's some quick notes on installing Windows 10X on real hardware from cabs. For this example,
we're assuming a system with no other critical disks installed, and a helpful host system being
around to set up the initial image.

This guide has been created for the 20279 version of Windows 10X.

Prerequisites
Host

Windows 10 Iron or Cobalt (20279 or 21xxx+) - though 20H2 can also work just fine
Utility USB flash drive of ~8GB+

Target
Graphics card with DCHU drivers available
UEFI system firmware with the ability to disable Secure Boot

https://twitter.com/NTAuthority
https://twitter.com/thebookisclosed
https://twitter.com/gus33000
https://twitter.com/WithinRafael
https://twitter.com/danielko

Boot drive larger than 100 GiB
Learn how to disable Secure Boot in your device, and change its boot order to allow
booting from the USB Flash Drive

Peripherals
Note: If your device doesn't have a built-in Ethernet adapter, prepare an external Ethernet adapter
(USB/USB-C/USB-C Hub with Ethernet). You won't be able to pass through the OOBE without
internet connection.

Common: Files & Tools
Workspace

1. Create a folder called 10X in the root of your drive, e.g, C:\10X
2. Create a subfolder called Sources
3. Create a subfolder called DCHUDrivers

4. Use v0.3.0.0. release of the Gus's
UUPMediaCreator(https://github.com/gus33000/UUPMediaCreator)) to download bits by
typing this command in the Command Prompt (where dlfolder is the place to put
downloaded bits, e.g., C:\10X\dlfolder , and amd64 specifies the architecture; you can
specify arm64 for ARM64 build of Windows 10X):

Note: you can use -z Test param to download Test build of Windows 10X which includes non-
production components.

5. Put them into Sources folder (e.g., C:\10X\Sources)
6. Make sure that bits are in Sources folder directly (\10X\Sources*compdb*.cab should be at

this level)
7. Download overlay.zip from Rafael
8. Unpack it to your Sources folder (e.g., C:\10X\Sources)
9. Open command line in the Sources folder and run fixup.cmd in it

10. Copy the appx folder from it to the root of your packages folder (C:\10X\Sources)
11. Move FM folder from \10X\Sources to \10X
12. Move OEMInput.xml from \10X\Sources to \10X
13. Your resulting folder structure should look like this:

uupdownload -o dlfolder -s Lite -t amd64 -r External -b Dev -a CB -c fe_release_10x -v 10.0.20279.1002

https://github.com/gus33000/UUPMediaCreator/releases/tag/0.3.0.0
https://gist.github.com/riverar/53d204bb275003fa9fcb387ff6a72530

Install Tools
Note: Both ADK and WinPE should have the same or higher version as your Windows 10X Image.

1. [Optional] If you have previous kits (e.g., WP8 Tools), remove them
2. Download the ADK Insider Preview ISO for your host OS version (only tested with

Windows_InsiderPreview_ADK_en-us_20279.iso)
3. Install Deployment Tools, ICD, Configuration Designer, and uncheck the rest if

possible/as needed
4. Download the Windows Preinstallation Environment ISO for your host OS version (only

tested with 20279 version)
5. Install Windows Preinstallation Environment

Configure Your BSP
Board Support Packages (BSP) is a collection of drivers/settings required to run Windows 10X on a
hardware platform. The BSP also includes a set of device drivers that are specific to the
components/silicon used in the device, mostly in the form of .inf files and their associated .sys/.dll
files.

You will need a BSP for your device if you want it to use all of its devices (WiFi, Cameras, etc.).

(disk root)
|
-----10X
 |
 ------DCHUDrivers
 ------FM
 ------Sources
 |
 -----appx (includes folders for each AppX)
 -----Retail
 |
 -----%Architecture_Name% (e.g., AMD64)
 |
 -----fre (includes the rest of the cabs)
 -----(several top-most cabs with compdb in the name, and .uupmcreplay file)
 ------OEMInput.xml

https://www.microsoft.com/en-us/software-download/windowsinsiderpreviewADK
https://www.microsoft.com/en-us/software-download/windowsinsiderpreviewADK

To configure your BSP, you need to obtain DCH (Universal) Drivers for your device, and then
prepare the OEMDriversFM.xml feature manifest XML file with the links to your drivers.

Prepare DCHU Drivers for Your Hardware
1. Obtain DCHU Drivers for your hardware (especially GPU)
2. Find all infs that contain "firmware update" in them and remove them
3. Copy all remaining drivers to your DCHUDrivers subfolder (\10X\DCHUDrivers)

Form A BSP for Your Hardware
1. Use OEMDriversFM.xml example from Albacore

2. For each of your drivers put a link to it in the form like one above.

Configure Your Image
1. Edit OEMInput.xml (remove VM_*, uncomment UEFI_Hardware line, add/remove features

etc.)
2. Add a link to your BSP (OEMDriversFM.xml) to your OEMInput.xml like this:

	<?xml version="1.0" encoding="utf-8"?>
	<FeatureManifest Revision="1" SchemaVersion="1.2" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">
		<Drivers>
			<BaseDriverPackages>
				<DriverPackageFile Path="C:\10X\DCHUDrivers\WcosGraphicsDriver.Intel\bin\Drivers\iigd_oc"
Name="iigd_dc_base.inf"/>
			</BaseDriverPackages>
		</Drivers>
	</FeatureManifest>

<?xml version="1.0" encoding="utf-8"?>
<OEMInput xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.microsoft.com/embedded/2019/06/ImageUpdate">
 <Description></Description>
 <DeviceLayoutType>GPT_SPACES_512</DeviceLayoutType>
 <SV>Microsoft</SV>
 <Device>GenericUEFIDevice</Device>

Build Your Image
1. Prepare your environment:

Start > open elevated *Deployment and Imaging Tools Environment

2. In that window, type this (where C:\ is the drive where your Windows 10 Insider Preview
ADK is installed):

3. Run this command to unregister the imaging toolchain overrides (unless you use a non-
production machine):

4. Run IMGGEN in your Command Prompt window (give a name to your ffu, e.g., SurfaceGo.ffu
if your device is Surface Go). Important: Use absolute paths both in files (OEMInput.xml
& OEMDriversFM.xml) AND in the command line:

Prepare USB Drive for Flashing

 <ReleaseType>Test</ReleaseType>
 <BuildType>fre</BuildType>
 <Languages>
 <Language Default="true">en-us</Language>
 </Languages>
 <AdditionalFMs>
	 <!--Windows 10X Feature Manifests-->
	 <AdditionalFM>c:\10X\FM\WindowsCoreProductionFM.xml</AdditionalFM>
	 <!-- Your BSMBSP -->
	 <AdditionalFM>c:\10X\OEMDriversFM.xml</AdditionalFM>
 </AdditionalFMs>
</OEMInput>

C:\> cd c:\Program Files (x86)\Windows Kits\10\Tools\bin\i386

C:\> "%ProgramFiles(x86)%\Windows Kits\10\Assessment and Deployment Kit\Deployment
Tools\%PROCESSOR_ARCHITECTURE%\DISM\wimmountadksetup%PROCESSOR_ARCHITECTURE%.exe" /q
/uninstall

C:\> imggen c:\10X\SurfaceGo.ffu C:\10X\OEMInput.xml C:\10X\Sources AMD64

Note: You can follow Microsoft docs (Part I: Create Multipartition USB Drive, Part II: Install WinPE),
or you can follow these instructions (taken from the docs):

1. Get an empty Flash drive (with size at least 8GB)
2. In the same Deployment and Imaging Tools Environment's elevated Command

Prompt window open diskpart and press Enter
3. Follow these instructions to create two disks:

4. Create Working WinPE files by using this command (where C:\WinPE_amd64 is the location
of your choice):

5. Create bootable media with it (where P: is the letter of the FAT32 partition of your USB
Flash drive):

6. Copy your Image (.ffu file) to the I: drive (the second partition of your Flash drive
formatted with NTFS)

7. Download and add gdisk64.exe file to the root of your WinPE partition (P: in this example)

Apply Your Image
Apply Your Image on Machine Without Windows 10X
Installed On It

1. Boot from WinPE drive
2. Open diskpart

List disk
select disk X (where X is your USB drive)
clean
create partition primary size=2048
active
format fs=FAT32 quick label="WinPE"
assign letter=P
create partition primary
format fs=NTFS quick label="Images"
assign letter=I
exit

copype amd64 C:\WinPE_amd64

MakeWinPEMedia /UFD C:\WinPE_amd64 P:

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe--use-a-single-usb-key-for-winpe-and-a-wim-file---wim#create-two-partition-drive
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-create-usb-bootable-drive

3. Type this:

Take a note of the name of your device's main disk drive, e.g., disk 0 4. Type exit to leave
diskpart 5. Use this command (and specify the correct path to the ffu that you created above, as
well the id of your physical drive):

6. Once complete, remove your USB flash drive
7. Type exit in the Command Prompt window

Apply Your Image on Machine With Windows 10X Installed
On It

1. Boot from WinPE drive
2. Type notepad to open notepad
3. Use File-->Open to find the name of your WinPE disk
4. Type this to identify the id of your physical drive:

5. Type this (where D:\ is the name of your WinPE disk and 0 in the end of physicaldrive0 is
the id of your physical drive):

6. Make sure that it contains OSPool and other partitions of Windows 10X
7. Type this to clean up the drive (where 0 in the end of physicaldrive0 is the id of your

physical drive):

and press Enter

8. Use this command (and specify the correct path to the ffu that you created above, as well
the id of your physical drive):

list disk

dism /apply-ffu /imagefile:C:\YourDevice.ffu /applydrive:\\.\physicaldrive0

spaceutil get-drive -poolname ospool

cd D:\
gdisk64 -l \\.\physicaldrive0

gdisk64 \\.\physicaldrive0
o
w

dism /apply-ffu /imagefile:C:\YourDevice.ffu /applydrive:\\.\physicaldrive0

9. Once complete, remove your USB flash drive
10. Type exit in the Command Prompt window

Load Windows 10X
At this time, your Windows 10X will boot. If everything is correct you should see the OOBE.

Installing Windows 10X
(from cabs with Device
Image Generator) on real
hardware

Created: February 2, 2021 Last Update: February 4, 2021

Authors: NT Authority, Albacore, Gustave Monce, Rafael Rivera,
Daniel Kornev

Status: Draft

Supported Windows 10X Version: 20279

Disclaimer: Some drivers may fail to load, the guide will be updated with extra tips on
extending driver compatibility later

Overview
Here's some quick notes on installing Windows 10X on real hardware from cabs using the user-
friendly Device Image Generator made by Albacore. For this example, we're assuming a system
with no other critical disks installed, and a helpful host system being around to set up the initial
image.

This guide has been created for the 20279 version of Windows 10X.

Prerequisites
Host

https://twitter.com/NTAuthority
https://twitter.com/thebookisclosed
https://twitter.com/gus33000
https://twitter.com/WithinRafael
https://twitter.com/danielko
https://twitter.com/thebookisclosed

Windows 10 Iron or Cobalt (20279 or 21xxx+) - though 20H2 can also work just fine
Utility USB flash drive of ~8GB+

Target
Graphics card with DCHU drivers available
UEFI system firmware with the ability to disable Secure Boot
Boot drive larger than 100 GiB
Learn how to disable Secure Boot in your device, and change its boot order to allow
booting from the USB Flash Drive

Peripherals
Note: If your device doesn't have a built-in Ethernet adapter, prepare an external Ethernet adapter
(USB/USB-C/USB-C Hub with Ethernet). You won't be able to pass through the OOBE without
internet connection.

Common: Files & Tools
Workspace

1. Create a folder called 10X in the root of your drive, e.g, C:\10X
2. Create a subfolder called Sources
3. If you are running on a machine that is not the target machine (the one you want to flash

Windows 10X onto) create a subfolder called DCHUDrivers

4. Use v0.3.0.0. release of the Gus's
UUPMediaCreator(https://github.com/gus33000/UUPMediaCreator)) to download bits by
typing this command in the Command Prompt (where dlfolder is the place to put
downloaded bits, e.g., C:\10X\dlfolder , and amd64 specifies the architecture; you can
specify arm64 for ARM64 build of Windows 10X):

Note: you must use -z Test param to download Test build of Windows 10X which includes non-
production components.

5. Put them into Sources folder (e.g., C:\10X\Sources)
6. Make sure that bits are in Sources folder directly (\10X\Sources*compdb*.cab should be at

this level)

uupdownload -o dlfolder -s Lite -t amd64 -r External -b Dev -a CB -c fe_release_10x -v 10.0.20279.1002 -z test

https://github.com/gus33000/UUPMediaCreator/releases/tag/0.3.0.0

7. Download overlay.zip from Rafael
8. Unpack it to your Sources folder (e.g., C:\10X\Sources)
9. Open command line in the Sources folder and run fixup.cmd in it

10. Copy the appx folder from the downloaded folder (with bits) to the root of your packages
folder (e.g., C:\10X\Sources)

11. Create Tools folder
12. Create Devices folder
13. Create FFUs folder
14. Create FMFiles folder
15. Extract FM.xml files from all CABs that contain FM~ in their name into a folder called

FMFiles by using this command (thanks to Steve Troughton-Smith (Tweet)):

16. Your resulting folder structure should look like this:

Install Tools
Note: Both ADK and WinPE should have the same or higher version as your Windows 10X Image.

1. [Optional] If you have previous kits (e.g., WP8 Tools), remove them

expand -i Sources\Retail\AMD64\fre*FM~*.cab -f:*FM.xml Sources\FMFiles\

(disk root)
|
-----10X
 |
 ------DCHUDrivers (only if your target machine differs from the one you will build this image)
 ------FMFiles
 ------Sources
 |
 -----appx (includes folders for each AppX)
 -----Retail
 |
 -----%Architecture_Name% (e.g., AMD64)
 |
 -----fre (includes the rest of the cabs)
 -----(several top-most cabs with compdb in the name, and .uupmcreplay file)
 ------Tools
 ------Devices
 ------FFUs

https://gist.github.com/riverar/53d204bb275003fa9fcb387ff6a72530
https://twitter.com/stroughtonsmith/
https://twitter.com/stroughtonsmith/status/1356637737223348224

2. Download the ADK Insider Preview ISO for your host OS version (only tested with
Windows_InsiderPreview_ADK_en-us_20279.iso)

3. Install Deployment Tools, ICD, Configuration Designer, and uncheck the rest if
possible/as needed

4. Download the Windows Preinstallation Environment ISO for your host OS version (only
tested with 20279 version)

5. Install Windows Preinstallation Environment
6. Download Windows Image Generator (see tweet)
7. Unpack it to (disk root)\10X\Tools

8. Download updates to it
9. Unpack it over the existing files to (disk root)\10X\Tools

Configure Your BSP
Board Support Packages (BSP) is a collection of drivers/settings required to run Windows 10X on a
hardware platform. The BSP also includes a set of device drivers that are specific to the
components/silicon used in the device, mostly in the form of .inf files and their associated .sys/.dll
files.

You will need a BSP for your device if you want it to use all of its devices (WiFi, Cameras, etc.).

To configure your BSP, you need to obtain DCH (Universal) Drivers for your device, and then
prepare the OEMDriversFM.xml feature manifest XML file with the links to your drivers.

Prepare DCHU Drivers for Your Hardware
Common Steps

1. Go to (disk root)\10X\Tools\ and open DevImgGen.exe

https://www.microsoft.com/en-us/software-download/windowsinsiderpreviewADK
https://www.microsoft.com/en-us/software-download/windowsinsiderpreviewADK
https://mega.nz/file/KjIQDRyT#qPR_GNHcRYivreZyhDICSOhmngsKJsWuW5JSpIA6P6M
https://twitter.com/thebookisclosed/status/1356074468330917888
https://mega.nz/file/q2QSGLRC#Z8Vy8N8Qz0Bn6wR9gxOlhlad0FP6nwbzCzRxheRlVmI

Extracting Drivers From Your Target Machine
This is the case when your target machine is the same you're building this image on.

Example: you have Surface Pro 6 and you want to flash it with Windows 10X. You use Device Image
Generator to extract current drivers from your Windows 10 machine.

1. In the Windows Device Image Generator use the first menu option ("Export drivers
from this PC") to extract drivers from the current machine

2. Specify location for storing your drivers package in the opened window to 10X\Devices

Image not found or type unknown

3. Click on "Start export"

Using Downloaded Drivers
This is the case when your target machine is different from the one you're building this image on.

https://osg.wiki/uploads/images/gallery/2021-02/kFPXOYOEzbiGOkwW-image-1612453756539.png
https://osg.wiki/uploads/images/gallery/2021-02/mUT9KzvV4nlJK9Ms-image-1612453910260.png

Example: you have Surface Pro 6 and Surface Go. You want to flash your Surface Go with Windows
10X. You use Device Image Generator to generate device driver package from the drivers you've
downloaded for your Surface Go.

1. Obtain DCHU Drivers for your hardware (especially GPU)
2. In the Windows Device Image Generator use the second menu option to generate

device drivers package from your DCHU drivers folder
3. In the "Create configuration packages" specify location of your DCHU drivers ((disk

root)\10X\DCHUDrivers), and specify location for storing your drivers package in the opened
window to 10X\Devices

4. Click "Process drivers"

[Optional] Edit A BSP for Your Hardware
This is only needed if some of the devices shall not be used.

1. Use DeviceDriversPackageFM.xml generated by the Device Image Generator, located at (disk
root)\10X\Devices and comment out items that shall not be used:

Note: If your target machine is Surface Go, remove reference to SurfaceACPIBattery.inf .

[Optional] Configure Your Image
Note: Not yet supported by the tool (OEMInput.xml is generated on the fly currently).

1. Edit OEMInput.xml if needed.

Build Your Image

	<?xml version="1.0" encoding="utf-8"?>
	<FeatureManifest Revision="1" SchemaVersion="1.2" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.microsoft.com/embedded/2004/10/ImageUpdate">
		<Drivers>
			<BaseDriverPackages>
				<DriverPackageFile Path="C:\10X\DCHUDrivers\Intel\bin\Drivers\iigd_oc" Name="iigd_dc_base.inf"/>
				<!-- <DriverPackageFile Path="C:\10X\DCHUDrivers\SurfaceACPIBattery\bin\Drivers\iigd_oc"
Name="SurfaceACPIBattery.inf"/>-->
				<DriverPackageFile Path="C:\10X\DCHUDrivers\SurfacePen\bin\Drivers\SurfacePen" Name="SurfacePen.inf"/>
			</BaseDriverPackages>
		</Drivers>
	</FeatureManifest>

1. Prepare your environment:

Start > open elevated *Deployment and Imaging Tools Environment

2. In that window, type this (where C:\ is the drive where your Windows 10 Insider Preview
ADK is installed):

3. Unless you use a non-prod machine, run this command to unregister the imaging
toolchain overrides:

4. Use third option in the Windows Device Image Generator to begin generation of your
Image (ffu). Use (disk root)\10X\Sources as the location of OS packages. Use (disk
root)\10X\FFUs folder for storing your resulting FFU. Use (disk root)\10X\Devices as the
location of your driver configuration packages.

5. Click on "Start building", and make sure to allow the separate elevated process to start. It
will start the process of building the image.

C:\> cd c:\Program Files (x86)\Windows Kits\10\Tools\bin\i386

C:\> "%ProgramFiles(x86)%\Windows Kits\10\Assessment and Deployment Kit\Deployment
Tools\%PROCESSOR_ARCHITECTURE%\DISM\wimmountadksetup%PROCESSOR_ARCHITECTURE%.exe" /q
/uninstall

Prepare USB Drive for Flashing
Note: You can follow Microsoft docs (Part I: Create Multipartition USB Drive, Part II: Install WinPE),
or you can follow these instructions (taken from the docs):

1. Get an empty Flash drive (with size at least 8GB)
2. In the same Deployment and Imaging Tools Environment's elevated Command

Prompt window open diskpart and press Enter
3. Follow these instructions to create two disks:

List disk
select disk X (where X is your USB drive)
clean
create partition primary size=2048
active

https://osg.wiki/uploads/images/gallery/2021-02/jCEcrcwMqQnGfPd8-image-1612454099131.png
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe--use-a-single-usb-key-for-winpe-and-a-wim-file---wim#create-two-partition-drive
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-create-usb-bootable-drive

4. Create Working WinPE files by using this command (where C:\WinPE_amd64 is the location
of your choice):

5. Create bootable media with it (where P: is the letter of the FAT32 partition of your USB
Flash drive):

6. Copy your Image (.ffu file) to the I: drive (the second partition of your Flash drive
formatted with NTFS)

7. Download and add gdisk64.exe file to the root of your WinPE partition (P: in this example)

Apply Your Image
Apply Your Image on Machine Without Windows 10X
Installed On It

1. Boot from WinPE drive
2. Open diskpart
3. Type this:

Take a note of the name of your device's main disk drive, e.g., disk 0 4. Type exit to leave
diskpart 5. Use this command (and specify the correct path to the ffu that you created above, as
well the id of your physical drive):

6. Once complete, remove your USB flash drive
7. Type exit in the Command Prompt window

format fs=FAT32 quick label="WinPE"
assign letter=P
create partition primary
format fs=NTFS quick label="Images"
assign letter=I
exit

copype amd64 C:\WinPE_amd64

MakeWinPEMedia /UFD C:\WinPE_amd64 P:

list disk

dism /apply-ffu /imagefile:C:\\YourDevice.ffu /applydrive:\\.\physicaldrive0

Apply Your Image on Machine With Windows 10X Installed
On It

1. Boot from WinPE drive
2. Type notepad to open notepad
3. Use File-->Open to find the name of your WinPE disk
4. Type this to identify the id of your physical drive:

5. Type this (where D:\ is the name of your WinPE disk and 0 in the end of physicaldrive0 is
the id of your physical drive):

6. Make sure that it contains OSPool and other partitions of Windows 10X
7. Type this to clean up the drive (where 0 in the end of physicaldrive0 is the id of your

physical drive):

and press Enter

8. Use this command (and specify the correct path to the ffu that you created above, as well
the id of your physical drive):

9. Once complete, remove your USB flash drive
10. Type exit in the Command Prompt window

Load Windows 10X
At this time, your Windows 10X will boot. If everything is correct you should see the OOBE.

spaceutil get-drive -poolname ospool

cd D:\
gdisk64 -l \\.\physicaldrive0

gdisk64 \\.\physicaldrive0
o
w

dism /apply-ffu /imagefile:C:\YourDevice.ffu /applydrive:\\.\physicaldrive0

Reverting 10X boot
restrictions & returning to
classic 10
Prerequisites

A Windows 10 Setup USB of an identical or higher version than the 10X build you've used
For example if you're on 10X build 20279, you'll want Windows 10 Insider Preview
build 20279 or newer (download here)

An x64 EFI shell (click here to download)
gdisk64.exe (extract from ZIP) (click here to download)

Before you begin, make sure Secure Boot is turned off on the machine you wish to roll
back to classic 10

Tweak USB contents
Plug in the setup USB drive
Navigate to efi\boot inside your USB drive
Rename the existing bootx64.efi file to winx64.efi
Copy the EFI shell file you've downloaded to that directory and rename it to bootx64.efi
Create a file on the root of your USB drive called startup.nsh and open it in Notepad
Paste this text into Notepad and save the file:

dmpstore -d SecureBootPlatformID -guid 77FA9ABD-0359-4D32-BD60-28F4E78F784B
fs0:\efi\boot\winx64.efi
fs1:\efi\boot\winx64.efi
fs2:\efi\boot\winx64.efi
fs3:\efi\boot\winx64.efi
fs4:\efi\boot\winx64.efi
fs5:\efi\boot\winx64.efi
fs6:\efi\boot\winx64.efi
fs7:\efi\boot\winx64.efi
fs8:\efi\boot\winx64.efi

https://aka.ms/wip-iso
https://github.com/tianocore/edk2/blob/UDK2018/ShellBinPkg/UefiShell/X64/Shell.efi?raw=true
https://sourceforge.net/projects/gptfdisk/files/gptfdisk/1.0.6/gdisk-binaries/gdisk-windows-1.0.6.zip/download

fs9:\efi\boot\winx64.efi
fsA:\efi\boot\winx64.efi

Copy gdisk64.exe to the root of your USB drive
The USB drive is now ready to use

Extra troubleshooting
Recent devices with Intel Pentium (Gold) chips that use Insyde BIOS are prone to entering a faulty
Secure Boot state, resulting in the machine booting to a black screen with Security Boot Fail written
in the middle, even though UEFI says Secure Boot is off. To fix this issue, do the following:

Turn Secure Boot on
Save changes and boot to UEFI settings again
Turn Secure Boot off
Secure Boot should now be fully disabled

Erasing the Windows 10X disk layout
Boot your Windows Setup USB
Press Shift-F10 to open the Command Prompt

If nothing happens, you may need to also press the Fn key if your keyboard has one
Find the drive letter of your USB drive (for example D:)

An easy way to do this is to run Notepad and use the File>Open menu item, then go
to This PC and look for it

Navigate to it using this command (don't forget to use the appropriate letter for your own
USB)

Run spaceutil to find the ID of your physical drive

In spaceutil's output look for the #### column, the value can for example be 0
Double check that the ID is correct by running gdisk64

Don't forget to change X in the command to the ID of your drive

Make sure that the output of gdisk64 contains OSPool and other partitions of Windows
10X
Use gdisk64 to clean up the drive using the following commands

Don't forget to change X in the command to the ID of your drive

D:

spaceutil get-drive -poolname ospool

gdisk64 -l \\.\physicaldriveX

then press Enter

Type exit to close the Command Prompt

You can now continue installing Windows 10 like you usually would

gdisk64 \\.\physicaldriveX
o
w

Installing Windows 10X
20279 (emulator image) on
real hardware

Created: February 12, 2020 Last Update: November 25, 2022

Authors: NT Authority, Albacore, Gustave Monce, Rafael Rivera,
Daniel Kornev

Status: Draft

Supported Windows 10X Versions: 20279 (partially)

Here's some quick notes on installing Windows 10X on real hardware from emulator image or a
prepared VHDX. For this example, we're assuming a system with no other critical disks installed,
and a helpful host system being around to set up the initial image.

The guide has been updated for the 20279 image recently provided by @thebookisclosed. Ideally,
you'd build your own .ffu image from the .cabs.

Here's a link to Unofficial Guide to Build Windows 10X .ffu Image & Apply To Real

Hardware.

Prerequisites
Host

Windows 10 Iron or Cobalt (20279 or 21xxx+).
Utility USB flash drive of ~32GB+.

Target

https://twitter.com/NTAuthority
https://twitter.com/thebookisclosed
https://twitter.com/gus33000
https://twitter.com/WithinRafael
https://twitter.com/danielko
https://twitter.com/thebookisclosed/status/1349516296073916417
https://osg.wiki/books/windows-10x/page/installing-windows-10x-from-cabs-on-real-hardware
https://osg.wiki/books/windows-10x/page/installing-windows-10x-from-cabs-on-real-hardware

CPU with Hyper-V support for VAIL. No VAIL in the newer build.
Graphics card with DCHU drivers available.
UEFI system firmware with the ability to disable Secure Boot.
Boot drive larger than 128 GiB. An 128 GB SSD usually isn't.
Preferred: 4Kn boot drive. We'll provide steps a bit later for converting the image.

Host work
Fetch and mount the emulator image
Make sure you have a clean .vhdx from the download link, which we shall refer to as Flash.vhdx
from now on. Copy it someplace, and preferably keep another backup as well.

Mount it using PowerShell (as administrator):

Check if the emulator image is mounted correctly:

This should look like the following:

Gather UpdateApp and verify it works
Start diskpart so you can mount MainOS:

Mount-VHD "X:\WCOS\Flash.vhdx"

Get-StoragePool -FriendlyName OSPool

FriendlyName OperationalStatus HealthStatus IsPrimordial IsReadOnly Size AllocatedSize
------------ ----------------- ------------ ------------ ---------- ---- -------------
OSPool OK Healthy False False 127.9 GB 21.81 GB

list volume
select the volume called MainOS
select volume 42
assuming M: is free
assign letter=m

exit

From the MainOS partition, go and hunt down the following files and drop them in a standalone
folder (for example, X:\WCOS\Tools):

\Windows\Servicing

UpdateApp.exe
CbsApi.dll
CbsMsg.dll

\Windows\System32

CbsCore.dll
DrvServicing.dll
IUSpaces.dll
IUSpaces_vb.dll (copy and rename IUSpaces.dll)
UpdateAPI.dll
cimfs.dll
cmiadapter.dll
cmiaisupport.dll
cmintegrator.dll
dpx.dll
drvstore.dll
msdelta.dll
mspatcha.dll
mspatchc.dll
turbostack.dll
wcp.dll
wdscore.dll

Run cmd.exe as administrator, go to the tool directory, and try getting the installed packages on
the image:

The result should look a lot like the following:

cd /d X:\WCOS\Tools
updateapp getinstalledpackages

UpdateApp - Update Application for Windows Mobile

[00:00:00] Loaded servicing stack from X:\wcos\tools with session name IUPackageInfoSession_EFIESP
[00:00:00] External storage staging directory is: (null)
[00:00:00] Closing session IUPackageInfoSession_EFIESP
[00:00:00] Loaded servicing stack from X:\wcos\tools with session name IUPackageInfoSession_MainOS
[00:00:00] External storage staging directory is: (null)

If it does, congratulations! You can move on to the next step.

Inject graphics and network drivers
In 20279, these steps may arbitrarily fail. You can execute them from Windows PE as
well after copying the image, if you copy the drivers to your USB flash drive, and can
tell which drive letter is your UFD.

For this example we'll show the Intel HD Graphics driver, but you might need to add more INFs
depending on your hardware. If you can't find the right INFs, why are you even doing this?

Place extracted Intel drivers in a directory, so that you have e.g.
X:\WCOS\DHCUDrivers\Graphics\iigd_dch.inf . Open iigd_dch.inf , and note down the values for 'Provider'
and 'DriverVer'. For me, those were:

[00:00:01] Closing session IUPackageInfoSession_MainOS
164 packages:
 Microsoft-OneCore-HyperV-Guest-UpdateOS-Package~31bf3856ad364e35~amd64~en-
US~10.0.19563.1000, UpdateOS
 Microsoft-OneCore-HyperV-Guest-UpdateOS-Package~31bf3856ad364e35~amd64~~10.0.19563.1000,
UpdateOS
 Microsoft-OneCore-ServicingStack-UpdateOS-Package~31bf3856ad364e35~amd64~~10.0.19563.1000,
updateos
 Microsoft-OneCore-ServicingStack-UpdateOS-UX-
Package~31bf3856ad364e35~amd64~~10.0.19563.1000, updateos
 Microsoft-OneCoreUpdateOS-Product-Package~31bf3856ad364e35~amd64~en-US~10.0.19563.1000,
updateos
 Microsoft-OneCoreUpdateOS-Product-Package~31bf3856ad364e35~amd64~~10.0.19563.1000, updateos
 Microsoft-Windows-OneCoreUpdateOS-ImageCustomization-
Package~31bf3856ad364e35~amd64~~10.0.19563.1000, updateos
 Microsoft-Composable-ModernPC-BootEnvironment-Core-CodeIntegrity-Sbcp-
Package~31bf3856ad364e35~amd64~~10.0.19563.1000, EFIESP
 Microsoft-OneCore-BcdBootoption-Package~31bf3856ad364e35~amd64~~10.0.19563.1000, EFIESP

 [...]

getinstalledpackages completed successfully
command took 7 seconds

Provider=%Intel%
DriverVer=08/23/2019,26.20.100.7158

The provider name is an indirected variable here, so we go and find what %Intel% meant as well. A
bit below in the INF, we find the following:

Good! Now, invoke updateapp with the data we've just discovered to install the INF to the BSP
partition in your WCOS image:

Note the recurrence of Intel_Corporation and 26.20.100.7518 . The installation process will complain
with an error code of c0880005 if you get the 'keyform' wrong.

The general rule for inf file names and provider names in the 'keyform' is the following:

Any space in the inf name or the provider name must get replaced by an underscore '_'
Any dash in the inf name or the provider name must get replaced by an underscore '_'

Finally, commit and finalize the image so future update application won't fail:

After you've installed your favorite driver packages, we can prepare the utility flash drive.

Make a utility flash drive
Gather the following assets into a directory we'll label X:\WCOS\UtilityDrive\Boot :

From an ISO of Windows 10 21286 or above (you can get it from the Windows Insider
Preview 'advanced' page):

boot\
EFI\
sources\boot.wim
bootmgr.efi

For later servicing, your WCOS\Tools folder. Use a hex editor to replace any mention
of the Unicode string X:\Windows in UpdateAPI.dll and UpdateApp.exe with
something like X:\Wbndows , or expect any servicing tasks to fail.
An x64 EFI shell. Rename EFI\boot\bootx64.efi to EFI\boot\winx64.efi, and name
the shell as EFI\boot\bootx64.efi. You'll need the shell in order to ever boot regular
Windows again (including PE).
A file called startup.nsh in the root:

Intel = "Intel Corporation"

updateapp install "DriverPackage|X:\WCOS\DHCUDrivers\Graphics\iigd_dch.inf|Intel_Corporation-
iigd_dch.inf~amd64~26.20.100.7158~bsp|0"

updateapp finalizecommit

https://github.com/tianocore/edk2/blob/UDK2018/ShellBinPkg/UefiShell/X64/Shell.efi?raw=true

If you are having troubles getting back to Windows PE/Windows Desktop, you may also try
the following extra commands in startup.nsh: (Warning: these will kill every variables you
have saved on your system)

dmpstore -d SecureBootPlatformID -guid 77FA9ABD-0359-4D32-BD60-28F4E78F784B
fs0:\efi\boot\winx64.efi
fs1:\efi\boot\winx64.efi
fs2:\efi\boot\winx64.efi
fs3:\efi\boot\winx64.efi
fs4:\efi\boot\winx64.efi
fs5:\efi\boot\winx64.efi
fs6:\efi\boot\winx64.efi
fs7:\efi\boot\winx64.efi
fs8:\efi\boot\winx64.efi
fs9:\efi\boot\winx64.efi
fsA:\efi\boot\winx64.efi

dmpstore -d -guid BA57E015-65B3-4C3C-B274-659192F699E3
dmpstore -d -guid 77FA9ABD-0359-4D32-BD60-28F4E78F784B
dmpstore -d -guid EAEC226F-C9A3-477A-A826-DDC716CDC0E3

gdisk64.exe from GPT fdisk.
ddrelease64.exe.

Partitioning
1. Connect your UFD.
2. Open diskpart .
3. list disk , select disk the right disk, or you'll lose all data on it and will have to do a

long partition scan to have any hopes of retrieving your data, and clean + convert
gpt .

4. create partition primary size=5000 , format fs=fat32 quick , assign letter=y to make a bootable
FAT32 partition.

5. create partition primary , format fs=exfat quick , assign letter=z to make an exFAT partition to
house the VHDX.

Putting things in place
Place your boot drive directory on the drive you called Y: . Dismount-VHD "X:\WCOS\Flash.vhdx in your
PowerShell to unmount the VHDX, and copy the VHDX to Z: . You should now have a tree structure
similar to:

http://www.rodsbooks.com/gdisk/download.html
http://www.chrysocome.net/download

Eject and unplug the UFD.

Target work
Use your throwaway laptop or other modern enough system with larger-than-128GB system drive.
Make sure Secure Boot is off.

Boot Windows PE
Boot it on the target. Really. Once you get into Setup, press Shift-F10 to open a command prompt.
Go back and open another, for good measure. Alt-Tab works for switching here.

Copy the VHD (destructive!)
Find out where your USB flash drive is mounted. This will involve doing a lot of the following:

Here, we'll assume the boot volume is D: and the volume with Flash.vhdx is E:.

Open diskpart , and attach the VHD:

Y:\
 Boot\
 EFI\
 Sources\
 Tools\
 startup.nsh

Z:\
 Flash.vhdx

C:
dir
D:
dir
E:
dir
F:
dir

Note down the ID of a 2048 MB disk with a 2048 MB free space, and subtract 1 from it.

The ID to note down, therefore, is 16. Also, note down the ID of the target disk (3 in this case).

Wipe it. Yes. That's data loss for you. Make sure you've got backups of anything important
on there.

(replacing 3)

Copy the VHDX's content to your disk:

(replacing 16 and 3)

... and go have a hot beverage while waiting for this to hit 131072M.

Rebuild the GPT (for 512-byte disks only)
You probably have a 512-byte disk, so you're going to have to rebuild the GPT. Yay!

Run commands along the following:

select vdisk file=E:\flash.vhdx
attach vdisk readonly
wait a minute or so
list disk
if MainOS etc. show up as online, good!

 # note: there's no 16
 Disk 17 Online 2048 MB 2048 MB

select disk 3
clean
convert mbr
exit

E:\Tools\ddrelease64 if=\\.\physicaldrive16 of=\\.\physicaldrive3 bs=8M --progress

> E:\tools\gdisk64 -l \\.\physicaldrive16
[..]
Number Start (sector) End (sector) Size Code Name
 1 512 8703 32.0 MiB EF00 BS_EFIESP
 2 8704 33554426 128.0 GiB 4202 OSPool

Remember the numbers (start, end, code and name) for each partition. Multiply the numbers by 8
(since 4K/512 = 8) - so you get 4096, 69624, etc.

Now, we'll create a new GPT for the target disk:

Exit all open windows, and your system should reboot.

Boot Windows PE, again

E:\tools\gdisk64 \\.\physicaldrive3
accept any warning
x
z

E:\tools\gdisk64 \\.\physicaldrive3
accept the warning
n
1
4096
69631
EF00

n
2
69632
268435415
4202

c
1
BS_EFIESP

c
2
OSPool

p
check if it makes sense - matches the above but with different sector numbers
w

Boot into Windows PE again - not the internal disk you just overwrote. Verify in diskpart if you can
list volume and it'll show MainOS etc. without you having attached the VHD.

Remove WCOS Security
In Windows PE, open diskpart and do select volume . Find the volume named ÈFIESP we will assume
here its volume id is 6, yours may be different. Then we run select volume 6 and assign . Do list
volume again to find the drive letter of EFIESP, in our case it's E: , yours may be different.

Delete the following file: del E:\efi\Microsoft\Boot\SecureBootPolicy.p7b

You may additionally replace winsipolicy.p7b with the one from a desktop sku (the file is located in
the same folder).

Boot W10X
OK, now you can boot your internal disk. If you haven't followed the Remove WCOS Security
instructions, this will set a Secure Boot policy value, however, so you'll have to boot your utility
flash drive again if you want to boot any other Windows media (or otherwise execute the dmpstore
command).

If everything's right, you should be booting into Windows 10X, and your graphics adapter might
even be working.

